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Nuclear Magnetic Resonance in Crystals
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The general problem of crystal structure analysis by means of nuclear magnetic resonance is
examined from the point of view of Van Vleck’s theory for the second moment of the resonance
absorption as applied to single crystals. Assuming only dipolar interactions to be important, and
assuming a rigid lattice, a procedure is described for acquiring ‘and analyzing the experimental
second moments. It is shown that the second moment may be completely described by fifteen
parameters in the most general type of crystal and thus only fifteen structural parameters can be
uniquely determined from second moment data. The fifteen experimental parameters arc related
to fifteen sums over internuclear coordinates. The fifteen lattice sums must be equal to the corre-
sponding theoretical lattice sums (from Van Vleck’s theory) for the correct crystal structure.
Thus a trial-and-error technique may be employed to determine nuclear coordinates. If the struc-
ture is known approximately, formulae are presented by means of which one may find the adjust-
ments required in the nuclear coordinates of the trial structure. The calculations are well suited
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to programming on a high-speed digital computer.

1. Introduction

For many years X-ray diffraction has been the most
important method available for the determination of
the structure of crystals and it seems unlikely that this
situation will change in the near future. However,
there are certain problems in crystallography for which
the X.ray technique is not well suited. Nuclear
magnetic resonance (NMR) has been shown to offer
a possible means of handling some of these difficult
cases but NMR has been employed only in rather
specific types of crystallographic problems. The most

widely used technique is based on the analysis of fine -

structure characteristic of groups containing two,
three, or four nuclei. However, this procedure may
be applied only when the intra-group distances are
much shorter than the inter-group distances. It is the
purpose of the present paper to consider the problem
of crystal structure determination by NMR from a
point of view which is not dependent upon the ex-
istence of such groups of nuclei.

The discussion will be based upon the theory of
Van Vleck (1948). In this theory the central quantity
is the second moment, AHZ, of the NMR absorption:

AHE = S Hzf(H)dH/ S f(H)dH , (1)

where f(H) is the absorption intensity at magnetic
field H. Van Vleck showed that this quantity can be
calculated from a knowledge of certain fundamental
(and well known) constants and the nuclear coordi-
nates in the lattice. The problem treated here is,
conversely, to determine the nuclear coordinates from
experimental NMR studies.

The discussion will be limited to the consideration
of nuclei of spin }, e.g., H', F'9, and P3'. The lattice
will be assumed to be rigid, and only dipolar inter-

ACI12

actions are treated. It is assumed that AH? data are
available as a function of the orientation of a single
crystal in the magnetic ficld.

The most important applications of the method
probably involve hydrogen, which is almost invisible
to X-rays. The nature of the dipolar interaction is
such that near neighbors tend to dominate, with the
result that short-range structural parameters can be
determined accurately but long-range structural para-
meters can be found only with difficulty. In this
respect the NMR method is complementary to the
X-ray method. Normally, single crystals whose linear
dimensions are of the order of one centimeter are
necessary to produce adequate signals.

2. Theory

Van Vleck’s theory (1948) for the second moment of
a magnetic resonance, broadened by dipolar inter-
actions alone, results in the expression:

AHE = P} Zria®(3 cos? yy— 1), 2)

k=11

where only one magnetic species is present. In this for-
mula "= (})I (I +1)g2f?/m, where, I is the nuclear spin,
m is the number of nuclei per unit cell at resonance,
yki is the angle between ry; and Hy, ry is the vector
between nuclei £ and I/, and H, is the externally ap-
plied magnetic field. g is the nuclear gyromagnetic
ratio and f is the nuclear magneton.

It is convenient to transform equation (2) in such
a way that the lattice sums may be calculated for
any selected orientation of the magnetic field. Let us
define a coordinate system fixed in the crystal. Let
the direction of H be defined by 6 and ¢ and let the

6



82 NUCLEAR MAGNETIC RESONANCE IN CRYSTALS

z

Ha |
o |
T ;
|

L y
AN |
A |

N
—7 N |
N
~

N

1/
v
Fig. 1. Coordinate system employed in the transformation
leading to equation (3).
direction of ry; be defined by 0x; and @i, see Fig. 1.
Enploying
o8 yx1 = c08 § cos Oxi+sin 0 sin Gx; cos (p— @)
one finds that
(3 cos? yr1—1)% = 9at+ 9bict 4 9b*d? +54a%b%c + 54a?h?d?
+54b4c2d?+ 108ab3cd? + ab3c?d + 108ab%cd
+36b%cd®+36b4c3d + 36ab3c® + 36ab3d?

+36a3bc+36a3bd —6a2—6b%c? —6b2d2—12abc
—12abd—12b%d +1 , (3)
where
a = cos 0§ cos Oy;; € = COS ¢ COS Px1

b = sin 0 sin O:; d = sin @ sin @ .

In equation (3) each term is a product of a function
of 6 and ¢ and a similar function of 0 and @x.
Thus the 6 and ¢ terms can be factored out of the
individual terms and the sums computed for any
crystal orientation. In computing sums such as these
it is convenient to employ cartesian coordinates:

h = Tatyht+eh
cos Oy = 2Ty
sin? 0y = (xf+yR)/rh
cos? gy = i/ (Ta+yi)
sin? @ = yh/ (@h+yh) -

One may write equation (1) in the form:

AHE = A cost 6+ B cos? 6+ C+ (D cos p+E sin @)
x cos® 6 sin 64 (F cos ¢+ sin @) cos f sin §
+ (H cos? p+1 cos @ sin p+J sin? @) cos? § sin? §
+ (K cos? ¢+ L cos ¢ sin ¢+ M sin? @) sin? 0
+ (N cos®p+0cos?psing+ P cospsin? p+Qsindp)
x cosfsin®0 + (R costp+Scosd psingp+ T cos?gsinZg
+U cos ¢ sin® ¢+ V sint ¢) sin* 6, (4)

where the 4, B, ..., V are proportional to lattice
sums. These quantities are defined in Appendix I.

The first step in the reduction of the NMR data
is to find the lattice sums. Of the 22 coefficients that
appear in equation (4) only 15 are independent.*
Appendix II gives seven of them in terms of the
other 15 sums. If this elimination be made in equation
(4) then we have an equation of the form

15
AHZ = 3 kafo(0, @) -
=1

As long as we have made at least 15 independent
measurements we may use the least-squares method
of determining the coefficients k; by minimizing

15 2
‘E{AHg (exp) — 3 Eefu(6, sv)} :
a i=1

data

This leads to the 15 ‘normal equations’

15

=48 (exp)~ S 1afi6, )} 110, 9) = 0,
d‘;ltla =t

where j = 1,2, ..., 15.

The problem of solving these fifteen ‘normal equa-
tions’ is apt to be very difficult in practice, so that
it is worth considering more indirect methods. Further-
more, the sufficient conditions that enough in-
dependent data are available are not obvious from the
preceding discussion. Thus, it is desirable to seek a
form for equation (4) which enables one to discern
the conditions for independence of measurements.

Equation (4) may be written as a double Fourier
series in 0 and ¢ in the form

AHS =

4

4
S Z{a,,mcos n cos MP+a,, 4 c0s 10 sinmy
n=0 m=0

X Qpi 4, SID 10O COS MP+ Ay, pa SIN 0O sinme} . (5)

There are 23 non-zero a,, ., of which 15 independent
ones are tabulated in Appendix IIT while Appendix IV
gives eight redundant conditions. Appendix V con-
tains the resolution of Appendix III. If, now, AH? is
measured for several fixed values of ¢ at equal spaces
(40) in 6, covering 0 to 27, we can apply the usual
orthogonality conditions and obtain

* It can be shown that there are no more than 15 indepen-
dent lattice sums in equation (4) by writing down the 22 terms:
1, 2%, 2, 2%, =y, %z, zy, o4, o3y, a?y?, ayl, yt, oiz, oYz, 2y2, 402,
x%2?, xyz?, Y22, 24, 223, yz%; and eliminating those containing
22 by means of 2% = 72—22—y2 Seven terms can be eliminated
in this way and no new terms are introduced. As all the in-
formation resides in 15 independent lattice sums it is desirable
to discard seven of the sums. This must be done in such a way
that each sum of the group discarded must be capable of being
expressed in terms of the 15 sums retained.
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(oo +gs COS 20+ 34y COS 4Qp+agg SIN 2¢0p
—(3[4)ags sin 4¢p = (s, 0)
Qop— gy +ags) COS 200p—4ay, COS 4@p+ayq sin 2¢p
+0yg si0 4@p = g(@p, 2)
Qg+ gq COS 20p+ayq COS 4@p— (Age+qgg) SN 205
—(ags/4) sin 4@p = g(@p, 4)
gy COS Pp+agg COS 3Pp+ags Sin @p—2ag, sin 3gp

= g((Pp, 6)
gy €OS Pp— (Ag3/2) €OS 3p+ags SN @p +ag sin 3@y

= .‘](‘Pp, 8)
where (6)

2n/A0

9(@p, n) = (40/7) X AH3(py, 146) cos (ind0)
i1

and for n=20,...,4

2n/A46
9(pp, n) = (46]m) X AHj(@p, 140) sin [i(n—4)46]
=1 for m=5,...,8.

Similarly, if AH% is measured for several fixed values
of 0 at equal spaces (4d¢) in @, we obtain

Qoo+ Qag COS 20p+a4g €08 40, = h(fp, 0)

gy Sin 40p+ag, sin 20, = h(fp, 1)

(1 —cos 20p)+a,, (cos 40, —cos 20,) = h(05, 2)

gy [sin 20, — (1/2) sin 40,] = A (0, 3)

@4q(3—4 cos 20, +cos 40p) = h(0p, 4)

e (1 —C0s 40p) +ayq (cos 20,—cos 46p) = A(6p, 5)

g5 Sin 20, +ag; sin 40, = h(65, 6)

ag, (sin 46,2 sin 20,) = h(0p, 7)

g [cOS 20, — (1/4) cos 40,— (3[4)] = h(0p, 8) , (7)

where the A(0p, m) sums are defined in analogy with
the g(pp, n) given above.

Experimentally it is easier to measure a -depen-
dence at constant @ than a p-dependence at constant 6.
That is to say, it is preferable for experimental reasons
to use cylindrical samples, for such specimens best fill
the conventional sort of coil and yield the best signal
strength.

Although the set of measurements used to determine
the anm is arbitrary we must take pains that enough
independent data are available. From equations (6)
it can be shown that it is not possible to determine
the 15 anm uniquely from 6-dependences at any three
constant values of @p, even though there are 15
equations.

A sufficient set of measurements consists of 6-
dependences at gp = 0, /4, /2 and a @-dependence
at 0p = 77/2. The lattice sums are readily calculated
in terms of this set and the results are tabulated in
Appendix VI. Note that four oriented single crystals
are necessary for this type of analysis.

In addition to the direct determination of the anm
the preceding analysis yields a number of sums over
the experimental data which must be identically zero.

g(gp,n) =0 for n =1,3,5,7 for any O-dependence
at constant ¢ and A(n/2,m) =0 for m =1, 3,6, 7.
These identities should be useful in assessing the
accuracy of the measurements and could be used to
smooth the data.

The second part of the reduction of the NMR data
is to find the lattice constants. To do this we now
consider the computation of the lattice sums W for a
general sub-lattice described by the fundamental
translation vectors, a, b, c. There is a point of the
sub-lattice at

r; = na+nb+ngc,

where 7,, n,, 1y are arbitrary integers. The sums are
to be computed relative to the point (zx, yx, z&). Nine
parameters are necessary to specify a general (tri-
clinic) sub-lattice completely and we designate these
as @, ..., Cy Where

a = agi+agj+a,’k

b = by'i+b,j+bok

c = coitegjt+egk
and i, j, k are unit vectors along the X-, Y-, and Z-
axes (see Fig. 2).

o

Fig. 2. The relationship of the crystallographic parameters
to the cartesian coordinates.

Any of the lattice sums 4, B, ..., V may be written
as
m
W =o' 3 3 abytelrgBretotd (8)
k=11

where v, %, v, and w are known integers..Equation (8)
may be written as

m
W=wX32Z2
k=1m mp ng

X {(x,,—nlao—nzb(','—n3cé)“(yk—nla6—nzbo—~nac(,')"

X (zk_"’qatl)l_nzb(;_nsco)wrﬁ(s+u+v+w) } ’ 9)
where
= (a0 — My B — 15Dy —ngCo)?

+ (Y= Qg —7gby— 1360 )2 + (2~ Ny @y —Mybg—156,)? -

6*
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We first postulate a trial structure on the basis of
other experiments and intuition, i.e., we assume values
for =z, ...,cy. Then, the 15 lattice sums W are
caleulated by means of equation (9). These trial sums,
W, are then compared with the sums obtained ex-
perimentally, W,:

OW = We—W:. (10)

The next problem is to determine adjustments in
the structural parameters, Oz, ..., dcy’, which will
minimize the W. This may be done as follows. By
direct partial differentiation one obtains:

m
(OW]ozy) = ' T X3 X
k=1 mn; ng ng
X {[u— (6 +u-+v-+w)rgk (@, —n 0o—nyby —ngc)?]
X (=19 @g—"Npbg  —NgCo)* ™ (Y — My @ —Ngby—75¢q")”

ot ! W )o—(6-+2u-+-v+4-w)
X (2p— 1@y —Nybg—N5C0) Tl )}

OW/ee)) = [ 33533

k=1 n; mg ng
X {[(6 +u+v+w)rg’ (yp—ny0g—nyby—ngc0 )2 —v]
12 ’ ’ 1yl
X (g —1185—Ngbg —N3Co)" (Y~ My B — 3Dy —13Cy )"

X (21— ny @y —Ngbg—ng)  ngrg®THHVINL
Therefore by

aw = g‘ (OW [0xk)dak+ . . .+ (OW ey ) dey’
k=1

we have

OWPT) = 3 52, ZEE{ V... +0cy EEEE{ ).
k=1
(1)

There are 15 equations of the form of equation (11)
and these may be used to solve for the parametric
adjustments oz, ..., oc”’. If there are more than 15
parameters to be adjusted additional conditions are
required if a unique solution is to be obtained.*
This self-consistent procedure leads to an improved
trial structure and the process is repeated until the
OW are minimized.

When other nuclear magnetic species are present in
the structure equation (2) must be augmented by a
second term to cover the foreign nuclei. Van Vleck
(1948) showed this term to be

m
2 T3 cos? yyy—1)2,
E=17

where I') = (1/3)I,(I;+1)g7p%/m. The extension of the
foregoing analysis to include this term is obvious.

* For example, X-ray analysis may yield very accurate
values for the unit-cell dimensions a,, ..., ¢;” but no infor-
mation regarding the positional parameters xy, yx, zx. In such
a case one would adjust only the parameters zy, ...; i.e.
assume that dag, ... are zero.

3. Conclusions

We have seen that NMR second moment data for
single crystals may be used to determine crystal
structures provided only dipolar forces are important
and the lattice is rigid. We will now consider the
quantity of structural information which may in
general be obtained.

The sums given in equation (9) may be written in
terms of sub-sums:

m m
=3 IWhk,

k=1 s=1

where W& represents the W sum over the & sub-
lattice and W® represents the W sum over the s
sub-lattice, all sums computed about the point
(®k, Yk, zk). Thus, there are m? sub-sums to be com-
puted for each of the 15 equations. However,

wWan = e =~ | = Wmm
and
Wa) — Wwad

so there are only [m(m—1)/2]+1 distinct sub-sums to
be computed. The calculation of so many lattice sums
is exceedingly tedious for most crystals. However,
the problem is well suited to solution by high-speed
electronic digital computers which will eliminate much
of the human labor.

The general lattice requires nine parameters for its
description, i.e., the components of a, b, and ¢, and
this description serves to locate one nucleus per unit
cell. Three additional parameters are required for
every other nucleus (per unit cell) to be specified. As
we have seen there are 15 lattice sums and thus 15
parametric adjustments can be made. Therefore, with
no outside information available, NMR second moment
analysis can uniquely determine a crystal which has
no more than [(15—9)/3]+1 = 3 nuclei per unit cell.

Thus we must draw upon all the outside information
at our disposal. X-ray diffraction data is probably
the most likely source of such information, and in
complex structures it may be that it is not practical
to begin the NMR study until a complete X-ray
analysis has been carried through. X-ray data can be
quite useful, however, even if a structure analysis has
not been attempted. For example, knowledge of the
lattice type, unit-cell dimensions, and the number of
molecules per unit-cell greatly simplifies the initial
steps. Also, such information increases the number of
parameters that the NMR method described herein
can cope with, e.g. if the cell dimensions are known
the NMR method can determine six nuclei per unit
cell as opposed to three when no data are available
at the outset.

From rather superficial aspects of the NMR spectra
one may often obtain structural information which is
highly pertinent to the second moment analysis. For
example (Pake, 1948), when protons occur in pairs,
as in hydrates, each proton sees predominately the
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local field due to its nearest neighbor. This results in
a characteristic doublet structure which yields the
proton-proton separation and the orientation of the
inter-nuclear vector. Thus any adjustment of the
parameters of one of the nuclei must be accompanied
by known adjustments of the other.

When the space group of the crystal is known it
may be possible to establish that certain of the lattice
sums are identically equal to zero by symmetry. This
analysis is direct and obvious for the sub-sums W&
because all the symmetries of the crystal also apply
to the sub-lattice. For example, if the crystal possesses
a plane of symmetry normal to the Z-axis it is ap-
parent, by inspection, that the sub-sums D®R, E®&)
FED QuD NGB QB and P®) are zero. The sub-
sums W cannot be dealt with such dispatch. In
order that use can be made of symmetry the point
(%r, Yk, z) must lie on a plane of symmetry, on an
axis of rotation, or on an inversion point of the sub-
lattice s.

APPENDIX I

Definition of 22 fundamental lattice sums
(equation (4))

4 = 22 red cost Oy = O 3 3 287,20
=1 k=11

i

B=—6I'33ry%cos? Oy = —6I"' 3 3 25r®

k—11 k=11

C=I>>rf
k=11

1

m
D = 361" 2 2 r3;® cos® Ok, sin Ox; cos prs
1

k=1

= 36F2 Zxklzkz”kl

k=1

m
E = 360" 3 37y cos® Ox sin Ok sin g

k=11

m
= 36F22y“2217';110
k=11

m
F = —12I' 3 3 r;® cos O sin Ok cos gr

k=11
m
= —12I' 3 X xpzyrid
=11
m
G = —12I' 3 3 r5;® cos O sin O sin g
E=11
m
= —12I' 3 Zyuzuri®
k=11
m
H = 54T 3 3 r7® cos? O sin? Oy, cos? g
k=11
= 54F2 quzkﬂ’kl
k=11
m
1 =108I" X 3 ry® cos? O sin? O; cos @x; sin @i
k=11

m
= 108I" 3 3 xqyuziri®
k=11

= 54F2,‘ 2 775° cos? O sin? O, sin? gu
k=11

= 541" 2 S yilrgt
k=11

Ke 6I'Ss
k=11

8 sin? Ox; cos? i
m
~6I' 3 S afyry?

L= —12F2 2 7% sin? Ox; cos @i sin @i
k=11
= - 12F2 2y’
k=11
m
M= —6F2 2 7‘,;26 sin? 9}:1 sin2 147)
k=11
m
= —6I' 2 2 Yare®
= 36FZ 3 r® cos O sin® Or; cos® g
k=11,

- 3, ~10
= 361 2 2 zpzara
k=11
m
0= Z 2 775° c0s Oz sin® Oy cos? @i sin @i
k=11

= 1081" 2 2 oY uzurg®

k=1

N
Il
h [\,]§

%‘ 73® c0s Ok sind O, cos @x; sin? @i
= 1081;%7”; 217 TuYurura
Q= 36];2;%‘ 773" c0os Okt sin3 O, sin3 @,
= 361152?721%1"}?1”
= 9FZIZI,‘ 7® sin® Ox; cost @i, = 9P2 %‘xk,r,,,

= 36f2 27’ sint Ok, cos? @r sin @i
k=11

m
= 360" 3 3 x}yry
k=11
m
T = 54" 3 3 r7;® sin? Or; cos? gy sin? gy
k=11
m
— 541" 3 3 e
k=11
m
U =36I" X 3 ry® sin® Ox; cos @i sind g
k=11

= 36f2 Zxkzygl’k—zw

= 91"2 2 r® sin® Oz, sint @p; = 9F2 ZJMH

k=11

APPENDIX II

7 relations between fundamental lattice sums
K= _-B-6C-M
H =270-34—-3R+3V+9M
T =27C+9B+34—-3R-3V
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P = —-9F-3D-3N
0 = —9G-3E-3Q
I
J

= —9L-38-3U0
= —27C-9B—-34+3R-3V-9M

APPENDIX III

15 non-zero Fourier coefficients in equation (5)

expressed by fundamental lattice sums
@y = (7B[64)+ (94/64)+ (49C/64)
ag, = (15C/8)+ (5B/16)— (3R/16)+ (3V/16)+ (5M/8)
a, = —(5L/16)—(38/32)—(3U/32)
= (54/16)+(3B/16)— (3C/16)
= —(L]4)—(8/8)— (U/8)
@ = —(8/16)+(U/16)
a0 = (354/64)+ (45B/64)+ (27C/64)
a4 = —(27C/8)— (9B/16)+ (TR/16)—(7V]16)— (9M/8)
ay = (R/16)+(V/16)— (27C/64)— (9B/64)— (34/64)
as = (D/16)—(F/16)
Ggy = (N/4)+(9F/16)+(3D/16)
ags = (E/16)— (G/16)
ag = (1D[32)+ (9F/32)
ags = (1E[32)+ (9G/32)
ag; = (9G/32)+ (3E/32)+(Q/8)

f 8
] 8
[

APPENDIX IV

Eight redundant relations between the
Gy, m (equation (5))

Qg3 = —Qgs/2 Agy = —2ag,

Qgg = —30pe/4 Aoy = 3ay,

Qgg = —Qyg/4 Apq = —4ay,

Qg = —OQog—Qoe Qoo = —Goa— 2
APPENDIX V

Resolution of relations in Appendix III
A = (9agy/4)+ (21as0/4) — (Taye/4)
B = —(59/2) — (23/6) + (17a,4,/6)
C = (5agp/4)— (5a20/12) — (@g/12)
D = 2a4, +9ag,
E = 2a4,+9ag;
F = 2a4—Tag,
G = 2ag,—Tag
L = —8ays—06ay

M = 8ay—2a5,— 209, — (@go/4) — (TAs0[12) + (1349/12)
N = 4a4—6ag,+ a4,

@ = 8ag,—6ag;+9ay;

B = 5a45+9ag;+ 844+ (9a99/4) — (15a50/4) + (9a40/4)
S = 8ays+10a,—8ayg

U = 8ayg+ 10045+ 8ayg

V = 8ay—5a45—9ags+ (9209/4) — (15a50/4) + (9240/4)

APPENDIX VI

The 15 fundamental Jattice sums expressed
by an independent set of 15 functions g(¢p, n)
(equation (16))
A = (15/4)9(0, 0)+(21/4)g(0, 2)+ (7/4)9(0, 4)
—(7/4)9(/2, 0)— (7/2)g(70/2, 4)+2h(x/[2, 4)
B = —(19/6)g(0, 0)—(23/6)g(0, 2)—(1/2)9(0, 4)
+(2/3)g(7/2, 0)+ (10/3)g (7/2, 4) — (4/3)h(/2, 4)
C = (5/12)9(0, 0)—(5/12)g(0, 2)—(1/4)g(0, 4)
+(5/6)g(7/2, 0)+ (1/6)g(7t/2, 4)— (2/3)h(7/2, 4)
D = 24)/(2)g(n/4, 7)+16)/ (2)g(n/4, 5)+3g(x/2, T)
+2¢(7/2, 5)—22¢(0, 7)—T7g(0, 5)
E = —14Y(2)g(=/4, 7)—TY (2)g(7/4, )+ 16g(7/2, T)
+16g(x/2, 5)+14¢(0, 7)+7g(0, 5)
F = —24)/(2)g(n/4, 7)—16/(2)g(/4, 5)+3g(/2, T)
+2g(m/2, 5)+26¢(0, 7)+9¢(0, 5)
G = 18)/(2)g(7/4, T)+9V (2)g(r/4, 5)—16g(7/2, T)
—16¢(7/2, 5)—18¢(0, 7)—9¢(0, 5)
L = 8g(n/4, 4)—h(%/2, 5)+2h(7/2, 4)
M= (23[4R)h(m|2, 4)+ (L1/8)g(m[2, 4)+ (7 [6)g(w[2, O)
—(1/3)9(0, 4)—(7/12)g(0, 2)— (17/12)4(0, 0)
= 24)/(2)g(7/4, T)+ 16}/ (2)g(7/4, 5)+39(7/2, T)
+2¢(7/2, 5)—30g(0, 7)—"7¢(0, 5)
Q = —14Y/(2)g(m/4, 1) =TV (2)g(x/4, 5)+8g /2, T)
+16g(w/2, 5)+14¢(0, 7)+79(0, 5)
R = —2h(n/2, 4)+ (1/2)g(7/2, 4)—(3/2)g(/2, 0)
+(7/4)9(0, 4)— (15/4)g(0, 2) + (15/4)g(0, 0)
S = —8g(w/4, 4)—h(7/2, 5)—2h(7/2, 4)+4h(7/2, 8)
= —8g(r/4, 4)—h(7[2, 5)—2h(7/2, 4)—4h(7/2, 8)
V = —2h(m/2, 4)+ (11/2)9(7/2, 4)+ (15/2)g(7/2, 0)
—(13/4)9(0, 4)— (15/4)9(0, 2)—(21/4)9(0, 0)
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